在信息技术的飞速发展中,探索更快、更节能的信息存储与传输方式具有重要的科学意义。自旋波用于信息传递无需电荷参与,具有无焦耳热损耗的特点,因而基于自旋波激发和传递原理制作而成的电子设备的能耗将极大降低。基于此,能产生自旋波激发的材料备受关注。在此之前,该类材料多集中于无机块体材料,如钇铁石榴石、CoFeB合金和NiO薄膜等。近日,西安交通大学前沿院翟沅琦助理教授(郑彦臻团队)通过精准的配位化学设计,采用...
高熵合金纳米材料凭借其表面配位环境的多样性和电子结构的可调性,表现出独特的催化性能,已成为材料科学研究的前沿热点。传统合成方法通常依赖高温热冲击(约1700 °C)实现不同金属元素的共还原和充分混合。相较之下,湿化学方法具有操作简便、反应条件温和且易于规模制备等优势,能够更精确地调控纳米材料的形貌和尺寸等特性。然而,不同金属盐之间存在较大的本征还原电位差,导致显著的还原动力学差异,并且较低的合成温度限...
糖尿病已对全球超过4.63亿人的健康构成威胁,其中糖尿病溃疡是最严重的并发症之一,造成极高的患者截肢率和死亡风险。由于机体血糖调节机制失效,糖尿病患者创面常面临细菌感染、微环境氧化应激以及血管损伤等多重挑战,这些因素共同导致慢性伤口愈合延迟。在糖尿病伤口微环境中,活性氧(ROS)发挥着重要的作用:高水平ROS辅助抗菌治疗;在适当浓度下,ROS能够促进血管生成和细胞外基质重塑。然而,ROS的持续性过量产生会破坏...
超弹性材料是指能在应力作用下产生超大可恢复应变的特种功能材料,在登月工程和深海探测等高技术领域应用广泛。相关装备的轻量化、小型化和精密设计对超弹性材料的性能提出了高要求,不仅需要具有高的超弹应力σC和大的弹性可恢复应变εe,还须在宽温域保持稳定的弹性模量(即Elinvar效应)。然而,普通金属材料虽然可以达到较高的强度,但弹性变形极限通常小于1%,且弹性模量随温度降低而增大。基于应力诱发马氏体相变所设计的...
氢气(H2) 作为理想的清洁能源,具有燃烧热值高,燃烧产物无污染,可通过氢燃料电池转化为电能的优点。此外,氢气作为重要的工业原料和还原剂,广泛应用于合成氨和金属精炼等领域。然而迄今为止,工业制氢主要依赖于化石资源。因此,利用可再生资源高效制氢对于可持续发展具有重要研究意义。光催化全分解水是理想的制氢方案(12 H2O→ 12 H2+ 6O2),但该转化由于热力学能垒过高(ΔE0=-1.23 V),极具挑战性。可再生资源——生物质是...
磁致伸缩材料是感知磁场并产生智能驱动特性的特种功能材料,在深空与深海探测等高技术领域应用前景广阔。高性能工程应用要求磁致伸缩材料不仅能在宽温域内产生无滞后的大体积磁致伸缩效应(即同时沿纵向和横向产生大的弹性变形),而且具备良好的结构承载性(即兼具高强度和高塑性)。然而,基于二级相变的磁性材料不产生体积磁致伸缩效应,且大磁致伸缩材料多为本征脆性的金属间化合物;尽管少部分具有大体积磁致伸缩效应的一...
中性水系有机液流电池(AORFBs)有望实现可再生能源从辅助能源向主导能源的转变。其中,电解液材料是液流电池中关键组成部分,是能量存储的核心单元,其成本占系统总成本的50%以上。因此,AORFBs从实验室创新到大规模制造的成功转型在很大程度上依赖于高性能电解质材料的开发。萘二酰亚胺材料因其独特的平面刚性结构以及优异的双电子存储特性而备受关注。然而,萘二酰亚胺衍生物作为负极电解质材料依然面临着高浓度性能不足以及制...
稀土永磁材料能向外界提供强磁场,在交通、能源、信息等领域应用广泛;稀土永磁材料同时也是消耗稀土战略资源最多的领域,因此,一直是稀土产业大国博弈的核心领域。随着稀土永磁材料领域国际竞争日益激烈,研发具有自主知识产权的、符合我国稀土资源特色的高性能稀土永磁材料及制备技术,对推动我国稀土永磁产业发展和稀土资源高效利用意义重大。前沿院马天宇教授团队长期从事稀土永磁材料基础研究和技术开发,近期在轻稀土永...
原子/分子团簇是物质结构的一种新形态,具有独特的本征性质。从原子/分子团簇到器件的跨尺度制造,将为国防高端装备和新兴电子等产业发展带来深刻变革。团簇的多物质构效关系、宏量制造、团簇结构跨尺度构筑以及团簇器件的高性能制造等是原子/分子团簇器件制造的关键发展方向,主导着从原子到产品制造的发展历程。把握这些发展背后的重要机遇,将有助于占领原子级制造研究的制高点,引领原子级制造方法的变革。由原子/分子团簇...
在当前这个信息大爆炸的时代,大量数据不断产生、传输和接收。如何保证数据在传输过程中的机密性和完整性成为国家、机构和个人关心的首要问题,尤其是在处理国家机密、先进设备和核心技术等敏感信息方面展现出巨大的应用前景。然而,大多数数据加密都是基于软件程序实现的,从而增加了潜在被解密的可能性。因此,探索基于硬件的加密方法无疑是增强数据安全性的一条大有可为的途径。忆阻器具有强大的逻辑计算能力、更高的集成密...
地址:曲江校区——陕西省西安市雁塔区雁翔路99号西安交通大学曲江校区西二楼
创新港——中国西部科技创新港19号巨构
邮编:曲江校区——710054 创新港——712046
版权所有:西安交通大学前沿科学技术研究院
站点建设与维护: 网络信息中心 陕ICP备06008037号-5