交大首页 | 公用平台登录 | 综合预约系统 | 共享空间 | EMAIL | 联系我们 | ENGLISH
FIST新闻 / FIST NEWS
FIST新闻
当前位置:  首页 - 新闻 - FIST新闻 - 正文
前沿院金明尚教授课题组在燃料电池催化剂制备方面取得重要进展
点击数:    更新时间:2021/04/09 15:37:53

铂(Pt)催化剂对于许多能量转换技术至关重要,例如电解水反应和燃料电池相关反应。为了制备高效铂催化剂,一种有效的方式是将Pt作为薄层沉积在纳米级基底上,以增大其原子利用率。然而,常见的内核浸出现象导致Pt基核壳结构催化剂耐久性不理想,这一点极大程度地限制了它们的实际应用。为提高此类催化剂的结构稳定性,传统策略主要通过加厚Pt外壳来更好地稳固内核,但这种方式在一定程度上牺牲了Pt催化剂的电化学活性表面积(ECSA)和质量活性,不利于成本效益。理想的Pt基核壳催化剂应在即使只含有单层Pt原子壳层时,依然能在循环催化中保持结构的完整性。要实现这种活性和稳定性的兼容,关键在于提升内核材料本身的抗腐蚀性以及增强内核与铂壳层间的界面作用,从而抑制内核原子和外壳铂原子在电催化过程中的溶解和迁移。

针对上述问题,西安交通大学前沿院金明尚教授课题组通过通过使用非晶态磷化钯(a-Pd-P)作为基底,开发出了一种壳层厚度和表面结构可控的无浸出、超稳定的核-壳型Pt基电催化剂。所制备的Pd @ a-Pd-P @ Pt SML核-壳催化剂在酸性氧还原(ORR)测试中可表现出高达4.08 A / mg Pt和1.37 A / mg Pd + Pt的质量活性。同时,在经历50,000次循环测试后,活性仅衰减~9%。密度泛函理论(DFT)计算表明,此类催化剂优异的耐久性来源于非晶磷化钯基底本身极强的耐腐蚀性以及Pt壳层与非晶Pd-P层之间的强Pt-P界面相互作用。

图1. 不同催化剂ORR催化活性和稳定性的比较。

【研究要点】

要点一:非晶磷化钯基底上晶态铂壳层的均匀沉积

由于非晶与晶体之间巨大的结构失配,通过液相合成构建非晶-晶体型核-壳纳米结构在传统意义上显得较为困难。在该工作中,Pt原子被成功地沉积在Pd@a-Pd-P立方体纳米基底上,形成均匀的Pt(100)壳层。DFT计算和XPS测试表明,Pt壳层与a-Pd-P基底间存在极强的Pt-P界面作用,这成为克服非晶与晶体间结构失配的关键。同时,通过对还原动力学和前躯体用量的调控,还可精确调控Pt壳层的厚度在亚单层到9原子层范围。通过界面间的相互作用突破晶格失配获得新型核壳纳米结构的方式为制备更加丰富多样的核壳结构提供了新的思路。

图2. 壳层厚度可调的Pd@a-Pd-P@PtnL纳米立方体。

要点二:酸性ORR催化性能表征

在ORR测试中,Pd@a-Pd-P@Pt2L催化剂表现出了远高于Pt/C和传统Pd@Pt2L的质量活性,价带XPS测试表明,来自于内核P原子的强配体效应降低了表层Pt的d带中心,从而降低了Pt原子对含氧物种的吸附,提升其催化活性。更重要的是,Pd@a-Pd-P@Pt2L在循环测试中表现出了超高的耐久性,在50,000次循环之后,质量活性仅衰减7.3%,远远优于Pt/C和Pd@Pt2L催化剂。

图3. 不同催化剂ORR催化性能。

要点三:DFT计算揭示催化剂耐久性提升的来源

对原子迁移能和空位形成能的计算表明,a-Pd-P非晶相的构建及Pt-P强相互界面作用的形成,极大程度地抑制了内核Pd原子的溶解和外壳Pt原子的迁移,从而保障了Pd@a-Pd-P@Pt2L在循环电催化中的结构稳定。

要点四:具有亚单层Pt壳催化剂的燃料电池性能表征

为进一步验证a-Pd-P基底的优势,作者将具有亚单层Pt原子壳的催化剂进行了电化学催化测试。结果表明,Pd@a-Pd-P@PtSML在酸性ORR和甲醇氧化(MOR)催化中均能表现出出色的催化稳定性。此外,通过对内核材料的形貌和尺寸进行调控,还可控制Pt壳层的晶面和整个核-壳催化剂中贵金属的用量,从而进一步优化催化剂的质量活性。

图4. 亚单层Pt壳催化剂的燃料电池催化性能。

【总结与展望】

本工作制备了一类含非晶Pd-P夹层的Pt核-壳电催化剂。a-Pd-P夹层本身极高的耐腐蚀性和基底与Pt壳层间形成的Pt-P强界面作用,都有助于避免常规核-壳结构Pt催化剂面临的结构不稳定性。基于这样的优势,即使Pt壳薄至亚单层时,催化剂依然能在电催化中保持极高的耐久性,从而得到具有潜在实用价值的高性能燃料电池催化剂。这项工作扩展了非晶纳米材料的应用,并为合理设计和合成Pt基电催化剂提供了新的见解。

【文章链接】

该研究成果以论文形式发表在国际化学领域权威期刊《ACS Nano》(影响因子:14.588)上,绝对第一单位为前沿院,绝对第一作者为贺天欧、王伟聪,前沿院金明尚教授为共同通讯作者之一。该研究工作得到了国家自然科学基金、“能源有序转化”基础科学中心、动力工程多相流国家重点实验室、金属材料强度国家重点实验室、陕西省普通高校青年杰出人才计划、西安交大青年拔尖人才计划等项目的资助。

Deposition of Atomically Thin Pt Shells on Amorphous Palladium Phosphide Cores for Enhancing the Electrocatalytic Durability

https://pubs.acs.org/doi/abs/10.1021/acsnano.1c00602

通讯作者简介】

金明尚教授简介:西安交通大学教授,博士生导师。于2012 年获得厦门大学理学博士学位(导师为谢兆雄教授),2009 年10 月至2011 年10 月获国家留学基金委的资助公派至美国华盛顿大学圣路易斯分校夏幼南教授课题组进行联合培养(导师为夏幼南教授)。2008年获中国化学会青年论文奖;2012年获得厦门大学理学博士学位,2016年入选西安交通大学青年拔尖人才计划,2018 年入选第二批“陕西省普通高校青年杰出人才计划”。研究方向为电催化能源转化。在相关领域发表SCI论文60余篇,包括Chem. Soc. Rev., Acc. Chem. Res., Nat. Commun., J. Am. Chem. Soc., Angew. Chem. Int. Ed., Nano Lett., Energy Environ. Sci., ACS Nano, Nano Lett.等国际著名刊物,总引用6600余次;出版专著1部(章);授权国家发明专利3项,美国发明专利1项。

【课题组介绍】

金明尚教授课题组主页:http://gr.xjtu.edu.cn/web/jinm

 

上一篇:前沿院金明尚教授课题组在非晶态合金纳米催化剂制备策略开发方面取得重要进展
下一篇:前沿院娄晓杰课题组设计出一种基于挠曲电效应的光电探测器
当前位置:  首页 - 新闻 - FIST新闻 - 正文

   Copyright © 西安交通大学前沿科学技术研究院   陕西省西安市雁翔路99号,交通大学曲江校区   邮编:710054 

    站长统计
×

前沿院微信公众号

前沿院微博

西交前沿招生群
297824086