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There has been a large body of experimental evidence for the existence of precursor lattice softening prior
to temperature-induced martensitic transformation, but little is known about whether such softening effect also
exists prior to stress-induced martensitic transformation. Recent molecular dynamics simulations suggested
such a possibility, but direct experimental evidence remains unclear. In the present study, we established a
simple experimental method that can measure elastic constant C’ from zero stress up to the critical stress prior
to stress-induced martensitic transformation. By applying this method to a Cu-Al-Ni single crystal, we found
C’ of (101)[101] shear mode does soften with increasing applied stress along the [001] direction, until a
stress-induced martensitic transformation occurs at a critical stress. This is direct evidence for the existence of
lattice softening prior to a stress-induced martensitic transformation. Our result completes an important con-
clusion that the softening of elastic constant C’ is a common feature prior to both temperature- and stress-
induced martensitic transformations. Furthermore, we also analyzed the dependence of C’ on uniaxial tensile

stress through a theoretical model and obtained similar result as that of our experiment.
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I. INTRODUCTION

Martensitic transformation (MT) is a diffusionless solid-
solid phase transition with a predominantly shear distortion
of the lattice. Martensitic transformation in shape memory
alloys has attracted much attention in the past decades since
it is the origin of the unique shape memory effect and
superelasticity.'=

MT can be induced either by mere cooling (temperature-
induced MT) or by stress (stress-induced MT). Prior to the
temperature-induced MT, numerous studies have shown that
the lattice of the parent phase softens with approaching the
transformation temperature,’->*-19 as manifested by the soft-
ening of the elastic constant C' [=(C;,—C},)/2] (Refs. 1-9)
and TA2 phonon.">!9-12 These precursory lattice softening
effects provide important clues on the physical nature of
martensitic transformation. On the other hand, stress can also
induce martensitic transformation, but little is known about
whether the elastic constant softening also exists prior to the
stress-induced transition. Previous investigations"!3* on
third order elastic constants and Gruneisen parameters indi-
cate that the vibrational anharmonicity of crystal increases
near the transformation temperature. Such information seems
to indirectly suggest a possible lattice softening with increas-
ing stress and/or pressure, but the anharmonicity effect was
measured only at low stress level. Neutron inelastic scatter-
ing studies'"!> seem to indiate that stress can cause the soft-
ening of the whole TA2 branch of the phonon dispersion
curve, including the long wavelength phonons; this can also
be viewed as an indirect indication of the stress-induced elas-
tic softening. Thus, it is unclear how the stiffness (i.e., elastic
modulus) of the lattice changes from zero stress up to the
critical stress for stress-induced MT.

Very recently, molecular dynamics simulations?” of stress-
induced MT suggested the existence of the softening of elas-
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tic constant C' from zero stress up to the critical stress
for stress-induced MT. It was found that under [100]-[001]

biaxial tension compression, C' softens in {110}[110] and

{101}[101] shear modes. Such a result was further supported
by an analytical theory based on Landau free-energy
expansion.”’ Despite the simulation result and theoretical
prediction, direct experimental evidence for the C’ softening
prior to the stress-induced MT is still lacking.

The purpose of the present work is to provide direct ex-
perimental evidence for the C’" softening from zero stress up
to the critical stress for stress-induced martentsitic transfor-
mation. For this purpose, a critical step is to determine C” at
arbitrary bias stress, in particular, at high stress level close to
the critical stress for the MT. In the present study, we estab-
lish an experimental method by using a simple tensile test

that can measure C’ of one of the {110}(110) shear modes at
arbitrary finite uniaxial stress. By applying this method to a

Cu-Al-Ni single crystal, the dependence of C’ of (101)[101]
shear mode on uniaxial tensile stress along the [001] direc-
tion was measured. Our experimental results clearly show
the softening behavior of elastic constant C' from zero stress
up to the critical stress. Combining the generally observed
C’ softening prior to temperature-induced MT, the present
finding completes an important conclusion that the softening
of elastic constant C’' is a common feature prior to both
temperature- and stress-induced MTs. Finally, by means of a
Landau-type analytical model, we also analyzed the variation
of C’" under uniaxial tension, and the analytical result is con-
sistent with our experimental results.

This paper is organized as follows: In Sec. II, we intro-
duce the principle of measuring elastic constant C’ at finite
uniaxial stress using a different method. Section IIT describes
the sample and experimental setup. Section IV presents the
experiment results. Then, in Sec. V, with a theoretical model,
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FIG. 1. Geometrical configuration of the uniaxial stress o rela-
tive to orientation of the crystal under test.

we prove the softening of elastic constant C’ prior to
uniaxial-tension-induced MT and a comparison to the experi-
mental results is made. Finally, the conclusions are made in
Sec. VL.

II. ANALYTICAL FORMULA OF ELASTIC
CONSTANT C’' UNDER UNIAXTAL STRESS

The physical meaning of C’ is the elastic modulus of a

{110}(110) shear mode, which can be defined as C' =(C|,
—C\,)/2 for a cubic crystal. Accordingly, elastic constant C’
at a finite uniaxial stress o can be expressed by

g _ o
Cr( 0') = 11 12 i (1)
2
where C{, and CY{, are the C;; and Cj, at given uniaxial
stress o, respectively.

Equation (1) indicates that, elastic constant C’ at finite
uniaxial stress o can be obtained by measuring C{, and C{,.
In the following, we show if using a single crystal sample
and performing uniaxial tensile testing along its [001] direc-
tion, C7, and CY, can be obtained by measuring the variation
of uniaxial strain and transverse strain as a function of the
uniaxial tensile stress o.

According to the generalized Hooke’s law,?! a small
change of stress da’lf; at a given uniaxial stress o will produce
a small change of strain de;), and their relationship can be
expressed as

doj;= Ciyde, (2)

3

where C7; are the elastic modulus tensor of the crystal at a
given stress o.

For a cubic single crystal, if the uniaxial tensile stresses o
is applied along the [001] direction, as shown in Fig. 1, Eq.
(2) can be simplified as follows:

0=CY,de], + C,ded, + CT,de3s, (3a)
0= COde? + CV\dely + Clhdels, (3b)
dO"r = C(]J'stllTl + C(lj'zdsgz + C?]d8g3’ (30)
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where C7, C7,, and Cy, are the three independent elastic
stiffness of the cubic crystal at given bias stress o; do” and
de$; are the infinitesimal increment in uniaxial stress and in
uniaxial strain in the [001] direction at the given uniaxial
stress o, respectively; de{, and de3, are the corresponding
infinitesimal increment in transverse strain in the [100] and
[010] directions, respectively.

The solution of Egs. (3a)—(3c) gives the implicit expres-
sions of CY, and CY, as

do?” _ (CTD*+ CTICTh = 2(CTy)*

des; 1t Ch
at __ 1 (5)

o o g
des; Chi+Cp

By combination of Eq. (1), (4), and (5), we obtain the ex-
pression of C’ at given uniaxial stress o as

Cr( )_M (6)
P (1+B-2B)
where
do” def,
adol g deh
des; des;

Equation (6) indicates that if the value of do”/de3; and
de{,/de3; at bias stress o can be measured, we can obtain C’
at this bias stress. It should be noted that for the uniaxial
tension configuration shown in Fig. 1, the measured C'(0) is

the modulus of (101)[101] shear mode, that is, C},,(o).

To calculate the value of Cj,,(o) at a given uniaxial stress
o, we first apply the bias uniaxial stress o along the [001]
direction, followed by superimposing an infinitesimal incre-
ment of uniaxial stress do” in the same direction and then
measure the resultant small change in uniaxial strain de$;
and transverse strain de{,. This can be readily done by mea-
suring o vs €33 and e33 vs g curves, and then calculating
their differential curves do”/de$; vs o and def,/de3; vs €55
curves (the latter can be converted into de{|/de3; vs o
curve). Substituting the do”/de%; and def,/deS; values into
Eq. (6) gives the C|y,(o). This is the principle of our experi-
mental method for measuring C’ [C},,(o) here] as a function
of uniaxial stress o.

III. EXPERIMENT

In the present study, we used the above-mentioned
uniaxial tension test to measure the stress-induced elastic
constant C’ softening prior to a stress-induced MT for a
single crystal of Cu-13.8Al1-4Ni (wt. %) alloy. The single
crystal was spark cut to a plate tensile specimen (Fig. 2),
whose surface normals are in three the (100) directions with
an uncertainty less than 2°. Differential scanning calorimetry
(DSC) was used to determine the transformation tempera-
tures of the tensile specimen, and the DSC sample was spark
cut from the same single crystal.
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FIG. 2. (Color online) Dimen-
sions (unit: mm) and orientation
of tensile specimen and the strain
gauge configuration.
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All the specimens for uniaxial tension and DSC measure-
ment were sealed into quartz tubes filled with low-pressure
argon gas. They were solution treated at 1273 K for 1 h and
quenched into brine. Then, all of the specimens were chemi-
cally etched to remove the surface layer that might be
slightly oxidized during heat treatment.

Uniaxial tensile tests were done with a SHIMAZU AG-
20KNIT tensile machine. The tensile strain £33 and trans-
verse strain €, were measured by two strain gauges placed
along the [001] and [100] direction, respectively, as shown in
Fig. 2. The loading rate was 3 N/s. A water bath heating unit
was used to control the temperature of the sample, which has
an accuracy better than =0.3 K. A differential scanning calo-
rimeter (Rigaku ThermoPlus DSC 8230) was used to mea-
sure the transformation temperature; the heating and cooling
rates were 10 K/min.

The DSC measurement shows that the transformation
temperatures of the tensile sample at zero stress are M,
=314.5 K and A;=328.5 K, respectively. The testing tem-
peratures for tensile measurement were 316 K (M +1.5 K)
and 320 K (M,+5.5 K). To guarantee, the tensile testing was
done in a full parent phase state, the tensile specimen was
first heated to above Af, and then cooled down to the testing
temperature before the test. A complete uniaxial tension
starts from zero stress, in the parent 3 phase, and stops at the
critical stress for the stress-induced B to y' (Refs. 22-24)
martensitic transformation, at which the tensile strain begins
to change abruptly. Although it is desirable to perform the
measurement over a wider temperature range above M, the
particular transformation nature of our Cu-Ni-Al alloy re-
stricts our measurement to a narrow temperature range (from
M, to M +14 K). This is because beyond this temperature
range, the stress-induced martensite (B’) is no longer the
same as the temperature-induced one (y'),>* thus making
it difficult to compare the physical meaning of the stress
effect on lattice softening at different temperatures. The es-
timated maximum uncertainty in determining the elastic con-
stants by the present method ranges from —5% to —3%.

IV. EXPERIMENTAL RESULTS

Figure 3(a) shows the measured uniaxial stress o Vs
uniaxial strain €3 relation (open circle) at 320 K. Figure 3(b)
shows the corresponding transverse strain &;; vs uniaxial
strain &43 relation (open circle) at the same temperature (the
uncertainty in strain measurement in Figs. 3(a) and 3(b)
ranges from —1.5% to 0). The solid lines in the two figures

are the least-squares best fitting curves of the data by a poly-
nomial function up to the eight power. The correlation coef-
ficient between the fitted polynomial and the experimental
data is better than 0.995.

do’/de3; vs o and de{|/de3; vs o relations are then
calculated from the above best-fitting polynomial functions
representing o Vs &33 and &;; Vs &3z relations. They are
shown in Figs. 4(a) and 4(b), respectively. By substituting
the do”/deS; and def,/de%; values into Eq. (6), we can ob-
tain the value of Cjy (o). Figure 5 shows the calculated
Clo (o) as a function of uniaxial tensile stress o at 316 K
(M,+1.5K) and 320 K (M +5.5 K), respectively. It is
noted that our fitting and differentiation procedure is analo-
gous to a procedure used in obtaining high order elastic
constants. 32528
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FIG. 3. (Color online) (a) Relationship between tensile stress o
and uniaxial strain €33 for a Cu-13.8Al-4Ni (wt %) single crystal
prior to its B to y' martensitic transformation. (b) Relationship be-
tween transverse strain &;; and uniaxial strain e33 under [001]
uniaxial tension for the same sample. The solid line is the polyno-
mial best-fitting curves. The uncertainty in the strain measurement
in (a) and (b) ranges from —1.5% to 0.
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FIG. 4. (a) Relationship between do”/def; and tensile stress o
for a Cu-13.8A1-4Ni (wt %) single crystal prior to its B to ¥’ mar-
tensitic transformation. (b) Relationship between de{,/de3; and ten-
sile stress ¢ under [001] uniaxial tension for the same sample.

From Fig. 5, we can see that under the [001] uniaxial
tension, Cj,,(o) decreases with the increase of uniaxial stress
o until o reaches the critical stress o, (as shown in Fig. 5).
This is the direct evidence for the existence of C’ softening
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FIG. 5. (Color online) Dependence of the elastic constant
C1o;(0) on [001] tensile stress o at two different temperatures for a
Cu-13.8A1-4Ni (wt %) single crystal prior to its 3 to ¥’ martensitic
transformation. Cj,, is the elastic constant corresponding to (101)
[101] shear mode. o, is the critical stress for stress-induced mar-
tensitic transformation.
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from zero stress up to the critical stress at which stress-
induced MT occurs. The softening behavior of C’ under
stress is quite similar to the softening of C’ prior to
temperature-induced MT in Cu-Al-Ni alloy.!>?*3% This re-
sult also confirms the result of recent molecular dynamics
simulations.2? Based on all the above, we can conclude that
the softening of C’ exists not only in temperature-induced
MT but also in stress-induced MT, and it seems a general
effect for transforming systems.

Besides, it is noticed that C|y,(0) at 320 K (M, +5.5 K)
shows almost a linear relation with the uniaxial stress o.
However, when the temperature is very close to M, [i.e.,
316 K (M,+1.5 K)], nonlinearity in the Cj,, (o) vs o curve
becomes apparent but only at high stress; Cj,, (o) keep a
linear relation with o at small stress. It indicates that the
nonlinearity in the C},,(0) vs o curve enhances in the vicin-
ity of M, which is also quite similar to the enhancement of
the anharmonicity prior to temperature-induced MT."!3 We
will discuss this point in Sec. V.

By extrapolating the Cj,, vs o (uniaxial tensile stress)
curve to zero stress, we obtain the value of C’ in the absence
of stress, which is C{, (0=0)=6.84 GPa at 316 K (M,
+1.5 K). This value is close to the reported value of
7.02-7.23 GPa (Refs. 5, 29, and 30) for Cu-Al-Ni alloys of
similar compositions by a pulse-echo method, which is a
standard method for measuring elastic constant with no bias
stress.

V. ANALYTICAL MODEL FOR ELASTIC CONSTANT
SOFTENING UNDER UNIAXIAL TENSION

In our recent paper,?’ we have established an analytical
theory to investigate the dependence of C’ on biaxial tensile-
compressive stress, and the results are in good agreement
with that of our molecular dynamics simulations.?’ In this
section, based on the same idea, we establish a theoretical
model to investigate the dependence of C’ on uniaxial tensile
stress. This will enable us to make a direct comparison be-
tween theory and our current experiment. We shall show that
the theoretical result also indicates the existence of C’ soft-
ening under uniaxial tension, being consistent with our ex-
perimental results.

In a stressed crystal, the thermodynamic potential ® is
related to the Helmholz free energy F, the stress oy, and
strains g;; as follows:3!

D=F-2 oysy. (7)
ik

The Helmholz free energy (F) of a cubic crystal in terms
of the symmetry adapted strain components is given in Ref.
32. By considering only symmetry-breaking terms, the
Helmholz free energy (F) in our case"'3!# is

1 | 1
F=Fy+ EC’(n?+ m) — ng(?ﬁ— 375) + ZC4(77f+ 7).

(8)

where C;=(1/8V3)(3C,13=2C3—C),) is a combination of
third-order elastic constants, C, is a combination of fourth-
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FIG. 6. (Color online) Calculated normalized elastic constant
5{01(0') as a function of normalized uniaxial stress & at temperature
well above M (black line, @=5.8 and 8=10.8) and close to M, (red
line, =8 and B=10.8). The deviation from the straight line (dotted
line) reflects the nonlinearity in the 5{01(0) vs & relation. The
uniaxial stress is applied along the [001] orientation, as shown in
Fig. 1.

order elastic constants, 7,=(2e33—&;;—€2,)/ V3 and 7
=(g;,—&y) are the deviatoric shear strains expressed in
terms of Lagrangian strain tensor components (g;;), and C" is

{110}110) shear modulus in the absence of external stress.

Considering the volume invariance condition &{;+&y,
+&33=0, 2, ;0,85 for the present uniaxial tension (shown in
Fig. 1) can be expressed as

1
2 Oy =08y = =0, )
ik V3
where o is the tensile stress along the [001] direction (shown
in Fig. 1).

Following a similar derivation as our previous work,?’ we
can obtain elastic constant C'(o) of the (101)[101] shear
mode under [001] uniaxial tensile stress o.

~ 1 1, 5
Clo1(0)=Clp(0)/C' =1 - —=ad + (- ~at+ —/3)52,
V3 3 6

(10)

where Cj,(0) represent the normalized elastic constant

C'(0)/C’ of (101)[101] shear mode at given uniaxial tensile
stress o; a=C3/C', and B=C,/C’; & is the normalized
uniaxial tensile stress =0/C’.

According to Landau theory of ferroelastic
transformation,’'31% C’, C;, and C, are positive, thus «
=C5/C'>0. With the information above, from Eq. (10) it is

clear that C’ (o) of (101)[101] shear mode softens with in-

creasing the uniaxial tensile stress & along [001].

Figure 6 shows the variation of C}, (o) with the uniaxial

tensile stress ¢ at a temperature not close to M, (solid line in

PHYSICAL REVIEW B 77, 174103 (2008)

Fig. 6), where the values of @ and 8 («=5.8 and 8=10.8) are
derived from the experimentally determined C’ (7.42 GPa),
C; (4326 GPa), and C, (80 GPa) values for a
Cu, 7pAly 15oNij 15, shape memory alloy at room temperature

(M,+75 K).'"* It can be seen that C|y,(0) softens with the

increase of [001] uniaxial tensile stress &, and C 1(0) vs &
relation is almost linear, which has a similar tendency as our
experimental result at 320 K (solid line in Fig. 5).

When the temperature is close to M, it is well known that
C’ further decreases; at the same time, it has been also ex-
perimentally found that C;, which reflects the vibrational an-
harmonicity of the crystal, increases significantly.'*> Combin-
ing these two effects, the value of a (a=C3/C") should have
a significant increase on approaching M,. Figure 6 also

shows 5{01(0') as a function of & with a larger @ (=8, and
B=10.8) (dash-dotted line in Fig. 6). Clearly, we can see

C 101(0) vs & curve exhibits apparent nonlinearity for a larger

a. Thus, our analytical result also indicates that the C}y,(o)
vs 0 curve become more nonlinear with the temperature ap-
proaching M. This is quite similar to our experimental re-
sults shown in Fig. 5 (dash-dotted line). Therefore, our ana-
lytical model well reproduces all the experimentally
observed effects.

From Eq. (10), we can conclude that in general C'(o) is
not linearly dependent on stress o. However, when stress is
low or when anharmonicity is weak (C; and C, are small),
C’(0) can be approximated by a linear function of stress o,
C'(0)=C"+So (S is a coefficient). The linear relation be-
tween C'(o) and o, which is known as the Thurston—
Brugger relation,* has long been used to measure third-order
elastic constants, which reflects the anharmonicity of the lat-
tice. Nevertheless, it should be noted that such a linear rela-
tion does not fully reflect the effect of stress on elastic con-
stant C’, in particular, in the vicinity of martensitic
transformation where the lattice is highly anharmonic or at
high stress level. A more complete description of the anhar-
monic effect needs Eq. (10), from which even fourth order
elastic constant can also be derived.

Finally, it should be noted that, recent molecular dynamic
simulation?® suggests that C' may harden in some of the

crystallographically equivalent {110}(110) shear modes prior

to stress-induced MT, i.e., not all the {110}110) shear modes
soften under stress. This can also be experimentally verified
by means of the present experimental method.

VI. CONCLUSION

In the present study, the elastic constant softening under
uniaxial tension was investigated by means of a simple ten-
sile test, and the following results are obtained:

(1) An experimental method is established for measuring

C’ of one of the {110}{110) shear modes for a cubic crystal
under finite uniaxial stress along [001].

(2) By means of this method, we show direct evidence for
elastic constant C’ softening prior to stress-induced marten-
sitic transformation. The stress vs C’ relation is nonlinear in
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the vicinity of M but becomes almost linear at higher tem-
perature. The stress-induced C’ softening effect, in combina-
tion with the well-observed C' softening prior to
temperature-induced martensitic transformation, suggests
that the softening of C’ is a common feature for both ther-
mally and stress-induced martensitic transformations.

(3) A theoretical model for the dependence of C’ on
uniaxial tensile stress is formulated, and the calculated result
is consistent with our experimental result.
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