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Abstract

The temperature and stress dependence of the properties of a recently discovered strain glass Ti48.5Ni51.5, which is a glass of frozen
local lattice strains, was investigated systematically. It was found that the ideal freezing temperature (T0) of the strain glass decreases with
increasing stress. When the stress exceeds a critical value rc(T), the pseudo-B2 strain glass transforms into B190 martensite. However, the
stress–strain behavior associated with such a stress-induced transition showed a crossover at a crossover temperature TCR, which is
�20 K below T0. Above TCR, the sample showed superelastic behavior; however, below TCR, the sample demonstrated plastic behavior.
More interestingly, the rc vs. temperature relation for unfrozen strain glass obeys the Clausius–Clapyeron relationship, whereas that for
frozen strain glass disobeys this universal thermodynamic law. A phenomenological explanation is provided for all the phenomena
observed, and it is shown that all the anomalous effects come from the broken ergodicity of the glass system and a temperature-depen-
dent relative stability of the martensitic phase. Based on experimental observations, a temperature–stress phase diagram is constructed
for this strain glass, which may serve as a guide map for understanding and predicting the properties of strain glass.
� 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Glass transition is usually observed in complex systems
owing to the existence of randomness, which causes frustra-
tion in the system so that long-range ordering becomes inac-
cessible [1,2]. A glass transition has two essential signatures.
The first signature is that glass undergoes a dynamic freezing
transition from a dynamically disordered state to a
‘‘quenched” or ‘‘frozen” disordered state [1,3], in which the
ergodicity of the system is broken [4–6]. The second signa-
ture is that there is no macroscopic symmetry change during
a glass transition; thus, glass has the same average structure
as its corresponding high temperature phase, which is very
different from a symmetry-breaking transition.
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Recently, a new class of glass, ‘‘strain glass”, was found
in a Ni-rich Ti–Ni system [7]. The dynamic freezing transi-
tion of strain glass was identified by the frequency disper-
sion of the AC mechanical anomalies, which obeys a
Vogel–Fulcher relation [7]. X-ray diffraction investigation
shows that there is no average structure change (or macro-
scopic symmetry change) during the strain glass transition
[8]. The local strain-ordered nano-domains were imaged by
high-resolution transmission electron microscopy, appear-
ing to be distributed randomly in a B2-like matrix [7]. A
recent study further proved that ergodicity is indeed bro-
ken during the strain glass transition [9]. Therefore, it
seems that the concept of strain glass is now established
on a solid experimental basis.

Strain glass is formed by doping a sufficient concentra-
tion of point defects (excess solute atoms or alloying
elements) into a normal martensitic alloy. The random
point defects locally distort the crystal lattice and generate
random local stresses in the system. These random local
rights reserved.
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stresses dictate the local strain order and hence prohibit the
formation of long-range strain ordering, i.e. spontaneous
martensitic transition [10–12] becomes inaccessible kineti-
cally, although martensite is thermodynamically favorable.
Instead, the system undergoes a freezing transition below
its freezing temperature, during which dynamically disor-
dered local strains (unfrozen strain glass) transform into
frozen locally ordered strains (frozen strain glass) [7,8].
Recent work [9] further showed that strain glass bears a
striking similarity to two other classes of glass—relaxor
in ferroelectric systems and cluster spin glass in ferromag-
netic systems. Relaxor is formed by doping point defects
into a normal ferroelectric system, whereas cluster spin
glass is formed by doping point defects into a normal fer-
romagnetic system. Thus, these three types of glasses are
physically parallel, and they are termed ‘‘ferroic glasses”

[9]. It should be noted that recent computer simulation
studies on the effect of random defects on martensitic tran-
sition [13] and on ferroelectrics [14,15] have showed the
existence of a percolation limit for defect concentration,
above which the system becomes non-ergodic [13–15].

Although long-range strain ordering cannot occur spon-
taneously in a strain glass system, it does not mean that the
long-range strain order (i.e. martensitic state) cannot be
achieved under any condition. Very recently, it was found
that the B190 martensitic state can be induced from a
pseudo-B2 strain glass state (either frozen or unfrozen
state) by a sufficiently high stress [8]. More interestingly,
this stress-induced strain glass-to-martensite transition
(STG-M transition) results in a new shape memory effect
and superelasticity [8], which are achieved in a system with-
out a spontaneous martensitic transition.

The above facts demonstrate that the properties of a
strain glass system are strongly dependent on both temper-
ature and stress. However, a systematic study of the behav-
ior of strain glass as a function of both temperature and
stress is lacking. Such a study will ultimately lead to a tem-
perature–stress phase diagram, which will serve as a guide
map to predict the properties of strain glass at any temper-
ature–stress state. Therefore, the present work systemati-
cally studies the temperature and stress dependence of the
properties of a Ti48.5Ni51.5 strain glass, and ultimately
establishes the temperature–stress phase diagram of this
strain glass. This work reveals a number of new phenom-
ena in strain glass, some of which disobey the established
thermodynamic principle. It is shown that, by considering
the unique non-ergodicity of the glass system and the ther-
modynamic stability of its ‘‘hidden” martensitic state, all
observed phenomena can be explained in a consistent way.

2. Experimental procedure

A commercial Ni-rich Ti–Ni alloy with nominal compo-
sition Ti48.5Ni51.5 was used in the present study. The sam-
ples were mechanically polished, followed by chemical
etching to remove the affected surface layer. Then they
were annealed at 1237 K for 1 h in evacuated quartz tubes
and subsequently quenched into room-temperature water
to obtain a homogeneous supersaturated Ni-rich Ti–Ni
solid solution.

To construct the temperature–stress phase diagram of
this strain glass, three phase boundaries in the strain glass
system must be determined. One is the phase boundary
between the unfrozen and frozen strain glass state. Another
two phase boundaries are: (i) the one between the B190

martensitic state and the unfrozen strain glass state (mar-
tensite/unfrozen strain glass); and (ii) the one between
B190 martensitic state and the frozen strain glass state
(martensite/frozen strain glass), respectively. The following
two sets of experiments were performed to determine these
three phase boundaries.

The first set of experiments was designed to determine
the phase boundary between the unfrozen and frozen strain
glass state (unfrozen strain glass/frozen strain glass), which
is actually the ideal freezing temperature vs. stress curve
separating the unfrozen and frozen glass. In this study,
the stress dependence of the ideal freezing temperature
was determined by investigating the DC bias stress depen-
dence of the ‘‘anomaly” temperature in its AC dynamic
mechanical properties. DC bias stress was restricted to be
below the critical stress (rc) for the stress-induced STG-
M transition. The dynamic mechanical properties, i.e. AC
storage modulus and tand (internal friction), were mea-
sured with a Q800 dynamic mechanical analyzer (DMA)
from TA Instruments. The dynamic mechanical measure-
ment under DC bias stress was done with a tensile fiber
clamp, which can generate a constant DC bias stress super-
imposed on an oscillating measuring stress. Nevertheless,
the dynamic mechanical measurement with zero DC bias
stress cannot be performed with the tensile fiber clamp,
because it always requires a DC preload. This measure-
ment was thus done with a single cantilever clamp instead.
In both cases, the storage modulus and internal friction
were measured as a function of temperature and frequency
simultaneously in a continuous-cooling (cooling rate
1 K min�1) multi-frequency (0.2–20 Hz) mode.

The second set of experiments was designed to deter-
mine the two phase boundaries at a higher stress level;
one is the martensite/unfrozen strain glass boundary and
the other is the martensite/frozen strain glass boundary.
This was done by measuring the stress–strain curve (to
observe the stress-induced STG-M transition) over a wide
temperature range, from well above the ideal freezing tem-
perature to well below this temperature. The tensile testing
was done using a tensile machine Shimazu AG-20KNIT.

3. Results

3.1. Strain glass at low stress: stress dependence of the

freezing temperature of strain glass

At a low stress level, stress does not generate a structural
change to a strain glass, but it may change the glass
transition temperature. The following shows the stress
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dependence of the strain glass transition temperature by
measuring the DC bias stress dependence of the ‘‘anomaly”

temperature in its dynamic mechanical properties. From
this dependence, the ideal freezing temperature T0(r) vs.
stress (r) relation can be determined, which is the phase
boundary in the phase diagram between the unfrozen and
frozen strain glass.

Fig. 1 shows the dynamic mechanical behavior of the
Ti48.5Ni51.5 strain glass at zero bias stress, r = 0. This strain
glass exhibits a frequency (x) dependent dip in storage
modulus and a peak in the corresponding internal friction
during the strain glass transition, which is similar to previ-
ous observations [7,8]. The dip temperature Tg(x) of the
storage modulus increases with increasing frequency x, fol-
lowing the Vogel–Fulcher relation x = x0 exp[�Ea/
kB(Tg(x) � T0)], as shown in the inset in Fig. 1. The ideal
freezing temperature T0(r) at r = 0 (i.e. T0(0)) is deter-
mined to be 163.2 K.

Fig. 2 shows the dependence of the dip temperature of
the AC storage modulus on DC bias stress (r = 0–
148 MPa) at frequency of (a) 20 Hz, (b) 1 Hz and (c)
0.2 Hz, respectively. Here, the stress level is below the crit-
ical stress (generally >250 MPa) for inducing a STG-M
transition. From Fig. 2, it is found that increasing the
DC bias stress from 0 to 148 MPa slightly lowers the dip
temperature Tg(x), and the effect becomes larger at lower
frequencies (by comparing Fig. 2a–c). By fitting the x–
Tg(x) curve at different DC bias stress with the Vogel–Ful-
cher relation, the stress dependence of the ideal freezing
temperature T0(r) is obtained, which is shown in Fig. 2d.
The ideal freezing temperature T0(r) shows a slight
decrease with the increase in DC bias stress r. Interestingly,
a similar phenomenon was found in spin glass [16], dipolar
Fig. 1. Frequency dispersion in storage modulus dips and internal friction
peaks of a Ti48.5Ni51.5 strain glass at zero bias stress. The inset shows the
ideal freezing temperature at zero stress, i.e. T0(0), can be obtained by
fitting the frequency (x) dependence of the storage modulus dip Tg(x)
with the Vogel–Fulcher relation x = x0 exp[�Ea/kB(Tg(x) � T0)].

Fig. 2. Dependence of the AC storage modulus and ideal freezing
temperature T0(r) on DC bias stress (r = 0–148 MPa) in Ti48.5Ni51.5 strain
glass: (a), (b) and (c) show the dip temperature (marked by arrow) of AC
storage modulus decreases with increasing DC bias stress at frequencies
20 Hz, 1 Hz and 0.2 Hz, respectively; (d) shows that the ideal freezing
temperature T0(r) also decreases with increasing DC bias stress r.
glass [17] and relaxor ferroelectrics [5], except that the
corresponding field is different. Thus, the bias field effect
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seems to be a general property for all these ferroic-based
glasses.

3.2. Strain glass at high stress: temperature dependence of

the deformation behavior and critical stress for stress-

induced STG-M transition

At a high stress level, strain glass undergoes a structural
change—it transforms into a normal B190 martensite, as
reported in previous work [8]. Here, one is interested in
the quantitative change of the deformation behavior of
strain glass with temperature, in particular the difference
between unfrozen glass (T > T0(0)) and frozen glass
(T < T0(0)).

Fig. 3 shows the variation in the deformation behavior
of the Ti48.5Ni51.5 strain glass with temperature, from well
above T0(0) (unfrozen glass) to well below T0(0) (frozen
glass). It also reveals how the critical stress rc for the
stress-induced STG-M transition changes with tempera-
ture. As depicted in Fig. 3, the Ti48.5Ni51.5 strain glass alloy
shows a superelastic (recoverable strain) behavior at
T > T0(0). Careful measurements show that the low tem-
perature limit of the superelastic behavior is not exactly
at T0(0), but at a lower temperature TCR (=143 K
�T0(0) � 20 K), which is the crossover temperature from
superelastic behavior to plastic behavior. For T < TCR,
the alloy shows a plastic (irrecoverable strain) behavior.
These results are similar to those reported in previous work
Fig. 3. Deformation behavior over a wide temperature range spanning the idea
glass. The deformation behavior of strain glass shows a crossover from supere
temperature to a crossover temperature TCR. Ti is the low temperature limit o
[8]. Fig. 3 further shows that, in the superelastic tempera-
ture regime (T > TCR), the critical stress decreases with
lowering temperature; by contrast, in the plastic tempera-
ture regime (T < TCR), the critical stress increases with low-
ering temperature. The temperature dependence of the
critical stress for the stress-induced STG-M transition
forms two phase boundaries, namely martensite/unfrozen
strain glass and martensite/frozen strain glass, in the tem-
perature–stress phase diagram.

4. The temperature–stress phase diagram of strain glass

From the experimental results presented in Section 3,
the temperature–stress phase diagram of Ti48.5Ni51.5 strain
glass is constructed and is shown in Fig. 4a. At a stress
lower than the critical stress rc, the strain glass system
undergoes a freezing transition from an unfrozen strain
glass to a frozen strain glass at its ideal freezing tempera-
ture T0(r), but the average pseudo-B2 structure remains
unchanged. The stress dependence of the ideal freezing
temperature T0(r) is the phase boundary between the
unfrozen and frozen strain glass. At a stress higher than
critical stress rc, the B190 martensitic phase can be induced
from either an unfrozen strain glass or a frozen strain glass.
The two rc–T curves for these two types of stress-induced
STG-M transition represent the two phase boundaries,
martensite/unfrozen strain glass and martensite/frozen
strain glass, respectively. It is important to note that the
l freezing temperature at zero stress T0(0) (=163.2 K) of Ti48.5Ni51.5 strain
lastic behavior to plastic behavior when the system is cooled from a high
f unfrozen glass under stress.



Fig. 4. Comparison between (a) the temperature–stress phase diagram of Ti48.5Ni51.5 strain glass alloy and (b) the temperature–stress phase diagram of
Ti48.4Ni50.6 normal martensitic alloy [16]. T0(0) in (a) is the ideal freezing temperature at zero stress. Ti in (a) is the temperature of the intersecting point
between the unfrozen strain glass/frozen strain glass boundary and the unfrozen strain glass/martensite boundary; it is also the low temperature limit of
the unfrozen glass under stress. MS in (b) is the transition temperature of martensitic transition.
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martensite/frozen strain glass boundary is not a phase
boundary in the thermodynamic sense. This is because
the frozen glass can transform into a martensitic phase
above this boundary upon loading, but the martensite
formed at high stress cannot go back to the frozen strain
glass upon unloading. The reason will become clear in
the next section.

Interestingly, the three phase boundaries do not join at
one point. The martensite/unfrozen strain glass and mar-
tensite/frozen strain glass boundaries intersect at a cross-
over temperature TCR, which is �20 K below T0(0). The
strain glass shows superelastic behavior above TCR and
plastic behavior below TCR, as shown in Fig. 3. It was also
found that the unfrozen strain glass/frozen strain glass
boundary intersects the martensite/unfrozen strain glass
boundary at a temperature Ti, which is �10 K above TCR

or 10 K below T0(0). This means that at a stress slightly
lower than the intersection stress, during cooling the sys-
tem first undergoes a glass transition, and then it is fol-
lowed by a martensitic transition. Such seemingly strange
behavior has been experimentally observed and will be
reported elsewhere [18].

The three phase boundaries of strain glass shown in
Fig. 4a also exhibit interesting features. The unfrozen
strain glass/frozen strain glass phase boundary shows that
the ideal freezing temperature T0(r) decreases slightly
(�5 K) with increasing DC bias stress up to 148 MPa. This
behavior sharply contrasts with the stress effect on a mar-
tensitic transition: uniaxial stress (which has a shear com-
ponent) always increases the transition temperature, as
can be deduced from the basic law of thermodynamic
phase transitions—the Clausius–Clapyeron relationship.
The martensite/unfrozen strain glass boundary shows that
the rc decreases linearly with decreasing temperature down
to Ti (low temperature limit of unfrozen glass under stress),
obeying the Clausius–Clapyeron relationship. This is simi-
lar to that for a normal stress-induced martensitic transi-
tion. In addition, the stress–strain curve of the
superelastic behavior (Fig. 3a–c) at T > Ti is also qualita-
tively the same as a normal stress-induced martensitic tran-
sition. However, when in the frozen glass regime (T < Ti),
the martensite/frozen strain glass boundary shows quite
different features from those of martensite/unfrozen strain
glass boundary. First, when the system becomes weakly
frozen (TCR < T < Ti), the slope of the rc–T curve becomes
smaller compared with that for T > Ti, which demonstrates
that the stress-induced STG-M transition begins to deviate
from the Clausius–Clapyeron relationship. Nevertheless,
the stress–strain curve still keeps the superelastic feature
in this temperature regime (Fig. 3e). Second, when the sys-
tem is strongly frozen (T < TCR), there is a fundamental
change in the rc–T relation and the stress–strain behavior.
In this temperature regime, rc increases with decreasing
temperature. This indicates that stress does not favor a
phase with high strain, clearly violating the general thermo-
dynamic principle—the Clausius–Clapyeron relationship.
Together with this fundamental change in the rc–T rela-
tion, the stress–strain curve shows plastic behavior
(Fig. 3f and g), which is different from that at higher tem-
peratures. These interesting effects are discussed in the next
section.

To reveal the difference between a strain glass and a nor-
mal martensite, the temperature–stress phase diagram of a
normal martensitic system Ti49.4Ni50.6 is shown in Fig. 4b
for comparison (data are from Ref. [19]). The tempera-
ture–stress phase diagram of Ti49.4Ni50.6 martensitic alloy
shows that a normal martensitic alloy undergoes a sponta-
neous martensitic transition from B2 parent phase to B190

martensite at its martensitic transition temperature MS on
cooling. Above MS, the B2 parent phase can be forced to
transform into the B190martensitic phase by stress. The
critical stress for stress-induced martensitic transition
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decreases linearly with decreasing temperature, obeying the
Clausius–Clapyeron relationship.

Comparing the temperature–stress phase diagram of the
strain glass Ti48.5Ni51.5 and the normal martensitic
Ti49.4Ni50.6, one can see that there are only two phases
(parent phase and martensite) for a normal martensitic sys-
tem, but three phases (unfrozen strain glass, frozen strain
glass and martensite) for a strain glass system. Obviously,
this difference is due to the strain glass transition, during
which the system changes from an ergodic state (unfrozen
strain glass) to a non-ergodic state (frozen strain glass).
The stress-induced STG-M transition in unfrozen strain
glass and stress-induced martensitic transition in the parent
phase of a normal martensitic system obey the Clausius–
Clapyeron relationship; this fact demonstrates that both
the unfrozen strain glass and the parent phase of a normal
martensitic system are ergodic. However, the stress-
induced STG-M transition in frozen strain glass disobeys
this general thermodynamic relation; this indicates that
the field-induced transition of a non-ergodic glass state
cannot be understood within the framework of classical
thermodynamics. In the following, a phenomenological
free energy landscape for strain glass is proposed, which
can provide a comprehensive explanation for all the impor-
tant physical effects of a strain glass, including the broken
ergodicity, the origin of the strain glass transition and
stress-induced STG-M transition.

5. Discussion

5.1. Phenomenological free energy landscape for strain glass

Strain glass is formed by doping point defects into a nor-
mal martensitic system. Therefore, it is reasonable to con-
sider that a strain glass has a free energy landscape similar
to that of a normal martensitic alloy [12,20–22], but with
some modifications to allow for the new feature (local
ordering) to be described.

In the case of a normal martensitic system, the free
energy landscape is usually delineated by a Landau free
energy surface in an order-parameter (homogeneous lattice
strain) space. The Landau free energy is characterized by
the existence of two types of energy valleys, i.e. minima;
one is for the parent phase with zero order parameter (or
strain), the other represents the martensite with a non-zero
order parameter (i.e. a long-range ordering of lattice defor-
mation). A critical temperature T* exists, at which the free
energy of the martensitic valley is equal to that of the par-
ent valley. At T > T*, the martensitic valley is metastable;
at T < T*, the martensitic valley is more stable than that
of the parent phase.

However, the Landau free energy expresses only homo-
geneous strain, thus it cannot describe a locally ordered
strain system like the strain glass. Therefore, a free energy
landscape is needed that can (1) describe the strain instabil-
ity of the system in the same way as the Landau free energy
does, and which has martensite as a candidate phase (so as
to be able to explain its possible transition into martensite),
(2) describe local strain ordering effect. The free energy
landscape (for strain glass) satisfying the above conditions
is a three-dimensional (3D) contour shown in Fig. 5a. The
free energy is established on a microscopic configuration—
average strain space. Each point in the space is a
microstate, which represents (1) a microscopic configura-
tion (a particular distribution of nano-domains in the sys-
tem), and (2) the average strain e corresponding to this
microscopic configuration. It should be noted here that
the ‘‘configuration coordinate” in Fig. 5a constitutes a
thermodynamic phase space (an ensemble of all the micro-
states with the same average strain). This is analogous to
the case of spin glass [1]. The important concept of ergodic-
ity will be discussed later in this phase space.

Fig. 5a shows three important features of the free energy
landscape of a strain glass system, as compared with a nor-
mal ferroelastic system. First, except for the 3D representa-
tion, the free energy F of a strain glass bears much
similarity to a standard Landau free energy curve: it also
has two types of valley: one for the e = 0 state (it is shown
later that it corresponds to the strain glass), and another
for the martensite (e = eM, where eM is the strain of mar-
tensite). This can be seen better from a F–e cross-sectional
view of the 3D landscape (Fig. 5b). It will be shown later
that the temperature dependence of the martensite valley
is also similar to that of a normal martensite system. Sec-
ondly, a strain glass can have numerous microstates for
the same macroscopic strain, which are depicted as the
quasi-degenerate minima in F-configuration cross-sectional
view (Fig. 5c, for e = 0); this is caused by the numerous
possible combinations of nano-domains that give rise to
the same average strain. Between these different micro-
states or configurations, random energy barriers exist.
Thirdly, the free energy surface is very rough (i.e. high bar-
riers between different microstates) for small average strain
(e ? 0), but it gradually becomes smooth (low barriers) for
large average strain (i.e. e ? eM). This is because a small
average strain (e ? 0) corresponds to a nearly random dis-
tribution of the nano-domains, and the change from one
microstate to another generally requires the switching/rear-
rangement of a large number of nano-domains, which cor-
responds to large barriers. However, for a large average
strain (e ? eM), most of the nano-domains are aligned
along the same direction, and thus the change from one
microstate to another involves the switching of only a small
number of domains; consequently, the barrier is low, and
the system can go easily from one state to another. In other
words, the system is essentially ergodic as e ? eM.

To show the 3D free energy landscape in a simpler way,
the 3D landscape is projected onto the F–e plane, and a
projected 2D free energy curve is obtained, which is shown
in Fig. 5d. The bottom of the free energy curve represents
the average strain (e) dependence of the average free energy
(F) of all the microscopic configurations corresponding to a
given macroscopic strain state. Note that this free energy
curve has a shape similar to the Landau free energy,



Fig. 5. The free energy landscape of a strain glass in a phase space: (a) 3D free energy landscape of a strain glass in the microscopic configuration
coordinate—average strain space; (b) and (c) are two sectional views of the 3D free energy landscape, i.e. free energy vs. average strain (e), and free energy
(F) vs. microscopic configuration at a zero strain, respectively; (d) projected free energy curve in Free energy vs. average strain plane. The solid line is the
free energy curve that represents the average free energy as a function of average strain; the difference between the upper dashed curve and the bottom solid
curve represents the average energy barrier as a function of average strain.
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because the strain glass is derived from a normal martens-
itic system, and thus it should share a similar free energy
curve. However, the projected free energy curve has an
important difference from the Landau free energy, that is,
it also describes the local barriers between the microscopic
configurations. As depicted in Fig. 5d, the difference
between the upper dashed curve and the bottom curve rep-
resents the average local energy barrier, which decreases
gradually with increasing average strain, until it becomes
negligible at the martensite state, which is ergodic. It will
be seen later that the local barrier of the strain glass is
the origin of strain glass formation, and it determines many
features of the strain glass.

In the following, the projected free energy curve is used
to explain the properties of strain glass and the experimen-
tal findings. The temperature dependence of the phase sta-
bility of martensite in the projected free energy curve for
strain glass is assumed to be qualitatively the same as in
the case of standard Landau free energy. As a consequence,
the martensitic valley decreases with decreasing tempera-
ture in the same way as a normal martensitic system.
Therefore, one is able to define a critical temperature T*,
at which F(eM) = F(0), i.e. the free energy of martensite
equals that of a zero-strain state. Consequently, martensite
is metastable at T > T* but stable at T < T*. From experi-
mental observation, at T0(0) the strain glass shows a super-
elastic/recoverable strain behavior (Fig. 3): one can
conclude that martensite is still metastable at T0(0); thus,
an important conclusion, that T0(0) > T* for strain glass,
is obtained. It is assumed that the local barrier increases
with decreasing temperature, and the thermal activation
energy kBT is higher than the local barrier at T > T0(0)
but lower than the local barrier at T < T0(0), which is sim-
ilar to the case of spin glass [1]. The above information
allows one to define four temperature regimes where strain
glass shows different thermodynamic stability, local barri-
ers and thermal activation kBT. Such differences will give
rise to different behavior of the strain glass:

(1) At T > T0(0) > T*, martensitic state is metastable and
kBT > local barrier, as shown in Fig. 6a.

(2) At T = T0(0) > T*, martensitic state is still metasta-
ble, but kBT � local barrier, as shown in Fig. 6b.

(3) At T = T*, the martensitic state has the same free
energy as that of the zero macroscopic strain state,
and kBT < local barrier, as shown in Fig. 6c.



Fig. 6. Phenomenological explanation for the broken ergodicity during the strain glass transition and stress dependence of the ideal freezing temperature
of strain glass. F is the free energy; T0(0) is the ideal freezing temperature at zero stress; T* is the temperature, at which martensitic state starts to be stable;
and rc is the critical stress of the stress-induced STG-M transition. (a), (b), (c) and (d) show the projected free energy curve of a strain glass at zero stress
for T > T0(0)� T*, T = T0(0) > T*, T = T* < T0(0) and T < T*� T0(0), respectively; (e) and (f) show the projected free energy curve of strain glass at
r < rc for T > T0(0)� T*, and T = T0(0) > T*, respectively. The stressed strain glass energetically favors the microscopic configurations with more orderly
aligned nano-domains, as circled in (e) and (f).
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(4) At T < T* < T0(0), the martensitic state is stable and
kBT� local barrier, as shown in Fig. 6d.

5.2. Origin of strain glass transition

In the following, the projected free energy curve of
strain glass is used to explain why the strain glass system
does not undergo a martensitic transition but rather under-
goes a glass transition with broken ergodicity.

Fig. 6a shows the projected free energy curve of strain
glass at T > T0(0) > T*. As the free energy of the martens-
itic state is higher than that of the macroscopic strain states
and the thermal activation is much higher than the height
of the local barriers, the system takes the zero macroscopic
strain state as its stable state. This equilibrium state corre-
sponds to an unfrozen strain glass or an ergodic strain
glass, in which the local ordered strains are spatially and
dynamically disordered. On cooling, the free energy of
the martensitic state decreases continuously, as shown in
Fig. 6b–d, and the system has a tendency to transform into
martensite at T < T*. However, before reaching the ther-
modynamic instability temperature T*, the system becomes
frozen into a glassy state at T0(0) (>T*). This is because,
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when the system is cooled to T0(0), the thermal activation
becomes comparable with most of the local barriers
(Fig. 6b); thus, it becomes impossible for the system to tra-
verse all the possible microscopic configurations of the zero
macroscopic strain state within experimental time. There-
fore, the global ergodicity of the system starts to break,
i.e. the unfrozen strain glass starts to transform into a fro-
zen strain glass or non-ergodic strain glass at T0(0). On fur-
ther cooling to T*, the martensitic state becomes
thermodynamically stable; however, kBT is lower than
the height of the barriers (Fig. 6c), thus the system cannot
be activated to the martensitic state and the long-range
strain ordering is suppressed. Owing to the limitation of
kinetics, the system is trapped into certain configuration
of the zero macroscopic strain state and cannot transform
into the martensitic state, although the martensitic state
becomes more stable at low temperature, as shown in
Fig. 6d. This results in a complete breaking of the global
ergodicity of strain glass system, and the local ordered
strains are completely frozen. Therefore, the strain glass
transition and corresponding broken ergodicity originate
from the local barrier or kinetic limitation created by the
random point defects.

5.3. Decrease in ideal freezing temperature with increasing

stress

Now the projected free energy curve of strain glass is
used to explain the decrease in T0(r) with increasing stress
r (<rc), a new effect observed in Fig. 2d. Fig. 6e shows the
projected free energy curve of a stressed strain glass at a
temperature above T0(0). It can be seen that the external
stress ‘‘tilts” the free energy curve, similar to the effect on
the Landau free energy of a normal ferroelastic system,
as a result of the stress–strain coupling energy �re. The
physical picture of the tilt in the free energy landscape is
that external stress tends to stabilize a macroscopic strain
state with a suitable non-zero average strain (as circled in
Fig. 6e). Microscopically, the system favors those micro-
scopic configurations, in which nano-domains roughly
align along the external stress.

At T > T0(0), the external stress does not generate a fun-
damental change in the properties of an unfrozen glass,
because the system is ergodic (kBT > barriers) and the
stress does not alter this. At T = T0(0), the system begins
to become non-ergodic (kBT � barrier height) at zero stress
(Fig. 6b). In such a case, an external stress can bring about
fundamental changes to a frozen glass. When the stressed
strain glass is cooled to T0(0) from a high temperature,
the projected free energy curve remains tilted by the exter-
nal stress during cooling. Thus, the system favors the mac-
roscopic strain state with a non-zero average strain, as
circled in Fig. 6f. As discussed above, the local barrier at
non-zero macroscopic strain state is lower than that at a
zero macroscopic strain state, so the microscopic configu-
rations in the non-zero macroscopic strain state now
become ergodic (kBT > barrier) under stress. In other
words, the stressed strain glass actually remains ergodic
and does not freeze at T0(0). In order to freeze the stressed
strain glass, further cooling is needed. This explains why
the freezing temperature decreases with the application of
an external stress. Apparently, the decrease in ideal freezing
temperature is more significant with increasing external
stress. The decrease in the freezing temperature by stress
demonstrates that the external field can delay the onset
of non-ergodicity.

The decrease in strain glass transition temperature with
increasing external stress is analogous to similar effects
observed in many ferroic-based glass systems, such as fer-
roelectric relaxors [5], spin glass [16] and dipolar glass
[17], except for a difference in the nature of the external
field (electric field and magnetic field in the latter cases).
Therefore, such an effect should be considered a common
feature of many glass systems. This feature is very different
from the well-known effect of external field on normal fer-
roic transitions: a unidirectional external field always
increases the transition temperature of these transitions, a
consequence of the Clausius–Clapyeron law. Clearly, such
a difference stems from the non-ergodicity of the glass
systems.

5.4. Temperature dependence of the critical stress for stress-

induced STG-M transition

The phase diagram of strain glass (Fig. 4a) and the cor-
responding stress–strain curves (Fig. 3) demonstrates that
the strain glass shows different features in the following
three temperature regimes: (1) at T > Ti (>TCR), the strain
glass shows superelastic behavior, and the corresponding
stress-induced STG-M transition obeys the Clausius–
Clapyeron relationship; (2) at Ti > T > TCR, the strain glass
also shows superelastic behavior, but the rc–T curve for the
stress-induced STG-M transition has a smaller slope than
case (1); (3) at T < TCR, the strain glass shows a plastic
behavior and the corresponding stress-induced STG-M
transition violates the Clausius–Clapyeron relationship,
i.e. the slope of the rc–T curve becomes negative. The
crossover temperature TCR differentiates plastic behavior
at T < TCR and superelastic behavior at T > TCR. TCR cor-
responds to the thermodynamic critical temperature T*, i.e.
TCR � T*, which will be discussed later. The following dis-
cussion mostly uses T* rather than TCR, because T* has a
well-defined physical meaning. Next, the free energy land-
scape of strain glass is used to explain the different behav-
iors at T > Ti (>T*), Ti > T > T* (�TCR) and T < T*

(�TCR).
At T > Ti (>T*), the strain glass is unfrozen (ergodic) at

stress rc (Fig. 4a) and exhibits superelastic behavior. The
superelasticity of strain glass is attributed to the (unfrozen)
strain glass being stable and martensite being metastable in
the absence of an external stress (Fig.7a and c). When the
system is loaded with a stress exceeding a critical value rc,
the martensite becomes a stable phase, as shown in Fig. 7b
and d; thus, the strain glass transforms into martensite.



Fig. 7. Phenomenological explanation for the temperature dependence of the deformation behavior of stress-induced STG-M transition. F is the free
energy; T0(0) is the ideal freezing temperature at zero stress; T* is the temperature at which martensitic state starts to be stable; and rc is the critical stress of
the stress-induced STG-M transition. (a), (c), (e) and (g) show the projected free energy curve of a strain glass at zero stress for T > T0(0)� T*,
T = T0(0) > T*, T = T* < T0(0) and T < T*� T0(0), respectively; (b), (d), (f) and (h) show the projected free energy curve of strain glass at r > rc for
T > T0(0)� T*, T = T0(0) > T*, T = T* < T0(0) and T < T*� T0(0), respectively, in which the martensitic state is thermodynamically favorable and
dynamically accessible with the assistance of the external stress.
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Upon unloading, the induced martensite becomes thermo-
dynamically unstable again, so the system reverts to the
original unfrozen strain glass state (Fig.7a and c). This
results in the observed superelastic behavior of strain glass.
As the free energy difference between the metastable mar-
tensite and the strain glass becomes smaller upon cooling,
the corresponding rc also decreases with decreasing tem-
perature. In addition, at T > Ti (>T*), the strain glass sys-
tem remains ergodic, so the situation is the same as a
normal martensitic system. Thus, the rc–T curve is gov-
erned by the thermodynamic law—the Clausius–Clapyeron
relationship.

At Ti > T > T* (�TCR), the strain glass becomes weakly
frozen, but it still shows superelastic behavior (Fig. 3e).
The reason for the superelastic behavior at Ti > T > T*

(�TCR) is the same as the case for T > Ti: the martensitic
state is still metastable, so there is a thermodynamic driving
force to revert the stress-induced martensite back to the
strain glass. Compared with that for T > Ti, the smaller
slope of the rc–T curve (Fig. 4a) indicates that, besides
the above thermodynamic consideration as in the case for
T > Ti, another important factor – kinetic limitation – is
playing a role. At Ti > T > T* (�TCR), the thermal activa-
tion energy kBT becomes lower than the local barrier, so an
additional external stress is required to assist the system to
overcome the local barrier (i.e. kinetic limitation). The
additional external stress required makes the slope of rc–
T curve smaller than without this effect (i.e. at T > Ti).
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Thus, the change in the slope is a result of the competition
between a thermodynamic factor (free energy difference)
and a kinetic factor (local barrier). At the temperature
range Ti > T > T* (�TCR), which is no more than 10 K
below Ti, the kinetic limitation is not so strong, as kBT is
just slightly lower than the local barrier. As a result, the
behavior of the system is governed mainly by the thermo-
dynamic driving force, which results in superelastic behav-
ior and a decrease in rc upon cooling, but with some
decrease in the rc–T slope due to the kinetic limitation.

At T = T*, the free energy of martensite becomes equal
to that of frozen strain glass, but the spontaneous martens-
itic transition cannot occur owing to the kinetic limitation,
as shown in Fig. 7e. When the system is loaded with an
external stress rc, the local barriers can be overcome, and
martensite can be induced, as shown in Fig. 7f. As the mar-
tensitic state has the same thermodynamic stability at T* as
the strain glass, it remains even after removing the external
stress. Therefore, at T = T*, the strain glass starts to exhibit
plastic deformation. Experimentally, one finds that TCR is
the crossover temperature from superelastic behavior to
plastic behavior, thus T* � TCR.

At T < T* (�TCR), the strain glass is strongly frozen,
and it shows plastic deformation with a negative slope of
the rc–T line. This is because the free energy of the mar-
tensite becomes even lower than that of the frozen strain
glass (Fig. 7g), and the induced martensite is energetically
stable upon unloading (Fig. 7h). This explains the plastic
deformation behavior. The negative slope of the rc–T line,
i.e. the violation of the Clausius–Clapyeron relationship at
T < T* (�TCR) is again a result of the competition between
the thermodynamic driving force and the kinetic limitation.
With temperature decreasing, the thermodynamic driving
force towards the martensite becomes larger (as depicted
in Fig. 7e and g), and thus this would cause a decrease in
rc. However, the kinetic limitation (local barrier) of frozen
strain glass increases more dramatically (Fig. 7e and g),
which leads to a bigger increase in rc. As a result, rc

increases rather than decreases with lowering temperature,
violating the Clausius–Clapyeron relationship.

From the above discussion, one can see that both the
slope change and the violation of the Clausius–Clapyeron
relationship in the frozen strain glass are due to the limita-
tion of kinetics or the broken ergodicity. This also further
proves that the strain glass transition is a kinetics-governed
freezing transition rather than a thermodynamic phase
transition.
6. Conclusion

The stress and temperature dependence of the properties
of strain glass was systematically studied. This led to the
construction of a temperature–stress phase diagram of a
Ti48.5Ni51.5 strain glass, which may provide a guide map
for understanding and predicting the properties of strain
glasses. The following conclusions were obtained:
(1) The ideal freezing temperature of strain glass
decreases with the increase in external stress. This
demonstrates that an external field can delay the
onset of non-ergodicity during a glass transition.

(2) The strain glass undergoes a stress-induced STG-M
transition when the external stress is beyond a critical
stress rc. The deformation behavior of the stress-
induced STG-M transition shows a crossover from
superelastic behavior to plastic behavior at a cross-
over temperature TCR.

(3) Strain glass obeys the Clausius–Clapyeron relation-
ship in its unfrozen (ergodic) state; however, in its fro-
zen (non-ergodic) state, it shows a decrease in the
slope of the rc–T line, and a complete violation of
such a universal relation. The slope change and viola-
tion of the Clausius–Clapyeron relationship is due to
the broken ergodicity of strain glass in the frozen
state, and the increase in the relative stability of mar-
tensite at low temperature. It further demonstrates
that the strain glass undergoes a kinetics-governed
freezing transition rather than a thermodynamic
phase transition.

(4) With a free energy landscape for the strain glass,
which is a Landau free energy established in the con-
figuration-strain space, all the observed effects are
found to have a consistent explanation.
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