返回主站
 
  人员组成
 
  人员组成  
 
马晓龙 当前位置:首页 >> 人员组成 >> 人员组成 >> 马晓龙
马晓龙
来源: | 作者: | 发布时间:2012-11-02 | 浏览:40721次

担任职务

西安交通大学前沿科学技术研究院生物工程与再生医学研究中心主任、特聘教授 

联系方式:

西安交通大学前沿科学技术研究院,西安市雁翔路99号,710054,陕西

电话:029-83395304

Email:peterxl.ma@mail.xjtu.edu.cn

研究方向:
高分子科学与工程,生物医用高分子材料,组织工程,药物缓释,仿生,自组装及纳米材料,干细胞和再生医学。

背景资料:
  马晓龙教授长期以来致力于生物医学材料及组织工程,其研究领域为生物医用高分子材料,组织工程,药物缓释,仿生、自组装及纳米材料,干细胞和再生医学等。是国际上最早开展组织工程支架研究的科学家之一,在国际组织工程生物医用材料和再生医学领域具有重要影响力。已发表编撰《Scaffolding in Tissue Engineering》专著一部,在学术期刊及专著上共发表128篇论文和章节,被SCI引用达6597次,单篇最高引用431次,H-index为41(2013年03月25日数据),8篇文章被选为专著与期刊的封面,授权和申报美国专利24项(授权11项)。任四个国际学术期刊的编委和顾问。
  
马晓龙运用无纺布和盐浸技术设计的生物支架在组织工程领域得到了多方面的应用。这些可生物降解的聚合物生物支架被首次被运用到再生血管,心脏瓣膜和肌腱等多种组织和器官。马晓龙的研究组研发了一种新颖的固液相分离技术,制造出高孔隙率,高机械强度的具有骨传导性质的生物支架,后又运用骨状磷灰石材料对支架的孔隙表面进行改性。这些新发明获得2项美国专利。马晓龙实验室开发出的一种新型的液液相分离技术能够将可降解聚合物制备成具有纳米纤维结构的支架材料这些支架也能有利地支持各种干细胞的分化,其中包括间充质干细胞,羊水干细胞,牙髓干细胞,以及胚胎干细胞,获得该纳米材料的制备技术的美国专利。之后,马晓龙开发了模板技术来实现组织工程支架材料球形孔网络的形成和控制,该技术也获得了美国专利。马晓龙实验室开发出了一种技术,将能够控制释放生长因子的纳米小球固定在纳米纤维的多孔支架材料内部的孔隙表面,并进一步实现了多种生长因子控制释放来促进组织的再生,这一成果在学术界得到了高度的关注和认可。马晓龙实验室最近研制发明纳米纤维空心微球及用其成功再生修复兔子的关节。

专著: 
Peter X. Ma and Jennifer H. Elisseeff (Editors) Scaffolding in Tissue Engineering. CRC Press, Boca Raton, FL, 2006
Peter X. Ma (Editor) Biomaterials and Regenerative Medicine. Cambridge University Press, 2012
Aldo R. Boccaccini and Peter X. Ma (Editors) Tissue Engineering using Ceramics and Polymers, 2nd Ed. Woodhead Publishing Ltd, Cambridge, UK, 2013
Murugan Ramalingam, Xiumei Wang, Guoping Chen, Peter X. Ma, Fu-Zhai Cui. Biomimetics: Advancing Nanobiomaterials and Tissue Engineering, Scrivener Publishing LLC, 2013

代表论文:

 
1. X Liu and PX Ma, The nanofibrous architecture of poly(L-lactic acid)-based functional copolymers. Biomaterials. 31(2):259-269 (2010).
 
2. H Tian, S Bharadwaj, Y Liu, PX Ma and A Atala. Myogenic Differentiation of Human Bone Marrow Mesenchymal Stem Cells on a 3D Nanofibrous Scaffold for Bladder Tissue Engineering, Biomaterials. 31(5): 870-7 (2010).
 
3. H Sun, K Feng, J Hu, S Soker, A Atala and PX Ma. Osteogenic Differentiation of Human Amniotic Fluid-derived Stem Cells Induced by Bone Morphogenetic Protein-7 and Enhanced by Nanofibrous Scaffolds. Biomaterials. 31(6): 1133-1139 (2010).
 
4. JX Zhang, K Feng, M Cuddihy, NA Kotov and PX Ma, Spontaneous formation of temperature-responsive assemblies by molecular recognition of a b-cyclodextrin containing block copolymer and poly(N-isopropylacrylamide). Soft Matter. 6: 610-617 (2010).
 
5. Wu Y., Guo B.L., Ma P.X. Injectable Electroactive Hydrogels Formed via Host-Guest Interactions, ACS Macro Letters 2014, 3: 1145-1150.

6. Zhao J., Zhao X., Guo B.L., Ma P.X. Multi-functional Interpenetrating Polymer Network Hydrogels Based on Methacrylated Alginate for Delivery of Small Molecule Drugs and Sustained Protein Release, Biomacromolecules 2014, 15:3246-3252.

7. Li L, Ge J., Wang L., Guo B.L., Ma P.X. Electroactive nanofibrous biomimetic scaffolds by thermal induced phase separation, Journal of Materials Chemistry B, 2014, 2:6119-6130

8. Wu Y., Wang L., Guo B.L., Ma P.X. Injectable biodegradable hydrogels and microgels based on methacrylated poly(ethylene glycol)-co-poly(glycerol sebacate) multi-block copolymers: synthesis, characterization, and cell encapsulation, Journal of Materials Chemistry B, 2014, 2, 3674-3685

9. Zhao J., Guo B.L., Ma P.X. Injectable alginate microsphere/PLGA-PEG-PLGA composite hydrogels for sustained drug release, RSC advances 2014, 4, 17736-17742

10. Ma X.J., Ge J., Li Y., Guo B.L., Ma P.X..Nanofibrous electroactive scaffolds from a chitosan-grafted-aniline tetramer by electrospinning for tissue engineering, RSC advances 2014, 4: 13652–13661

For a list of publications, please see Research Profile: http://www.researcherid.com/rid/E-4895-2011
 

招收硕士生、博士生和博士后。

博士后
博士生
硕士生
短期实验人员
已毕业学生
COPYRIGHT © 2011 Frontier Institute of Science and Technology ALL RIGHTS RESERVED